PhysiCL: An OpenCL-Accelerated Python Physics
Simulator

Benjamin Warner

Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, USA

dCorresponding author: warnerbc@plu.edu, b.c.warner@wustl.edu

Abstract. Numerical methods of physics analysis require specialized forms of programming as well as attention to issues
of implementation. PhysiCL is a Python package that aims to provide general-purpose tools for performing
OpenCL-accelerated physics simulations with ease. PhysiCL contains a Numpy-based code units system, a set of generic
simulation tools, built-in tools for photon scattering, tools for measuring light behavior, and tools for writing new
OpenCL-based simulation features. This package can be installed via PyPl using pip install physicl, and found
on GitHub with source code and examples at https://github.com/bcwarner/physicl.

INTRODUCTION

PhysiCL is a Python library that utilizes OpenCL to accelerate physics simulations, and it is intended to make
writing physics simulations easier for both students and researchers. Currently, the feature set is designed primarily
to work with simulations involving light scattering, and future work may expand it beyond this. We shall examine

the basic usage of PhysiCL, its OpenCL metaprogramming tools, its code units system, and its base light scattering
system.

FEATURES

Basic Simulation Operation

(2) (b)

FIGURE 1. Outline of a basic simulation conducted using PhysiCL. (a) Outline of a general simulation, with the area left of
the dashed line showing what the end user controls and the right showing what is abstracted away from the end user. (b) Outline
of the operation ofa Step in PhysiCL. A Python or OpenCL is run depending on whether OpenCL is turned on by the user.

At the root of the PhysiCL package is Simulation. It is primarily defined by an exit condition, two values
representing A¢ and ¢, an OpenCL context and command queue, a list of Objects and a list of Steps. When we
call start—which will call run on a separate thread—some setup is performed. We set ¢ and Af to zero, get the
starting timestamp, and initialize a list for keeping track of ¢s that were simulated. Then, while the exit condition
returns false, we call run on each Step. After the exit condition returns true, we call terminate on each Step
for it to perform any clean up. An overview of this process appears in Fig. la. Each Step utilizes three main
methods, init , run, and terminate, as well as _ run cl and run python. The first is used to
initialize the Step, the second one is used when the simulation runs each Step, and the third one is called when
the simulation is finished running. The last two are called to run the simulation using a parallelized OpenCL
implementation or native Python implementation, which allows for the comparison of their relative performance.
Users who wish to write new Steps will primarily modify init and run, in addition to both _run cl
and run python if such a comparison is desired. An overview of a typical process the latter three functions are
used in is shown in Fig 1b.

There are two primitive steps in the root module of PhysiCL. The first, UpdateTimeStep, is initialized with a
function that takes the simulation as an argument, determines what At should be and updates ¢ accordingly. The
second, MeasureStep, is a generic class for measuring the states of simulations that subclasses will override as
needed. In general, users will extend MeasureStep or one of its subclasses to measure behavior, and user
extensions upon Step will represent state-altering behavior. Another Step worth noting is
physicl.newton.NewtonianKinematicsStep, which updates the position of objects according to their
velocity.

OpenCL and Metaprogramming

PhysiCL relies on OpenCL and PyOpenCL? to achieve accelerated computation, and uses metaprogramming
techniques—where new code is generated dynamically—in concert to provide increased speed in developing and
executing simulations. OpenCL is a library that allows for parallel computing on a variety of devices, using
programs known as kernels.'? Kernels may be metaprogrammed using PhysiCL’s CLProgram. CLProgram
represents a partially written OpenCL kernel as well as the Python code needed to provide it input and retrieve
output. There are two stages to metaprogramming using CLProgram. OpenCL kernels must be compiled before
they are used, and when we first need to build our kernel, we call build kernel. When this function is called, a
completed OpenCL kernel is generated. From there, we can call run—which is done from within a Step—and the
appropriate Python code to collect input data and run the kernel will be generated. After the kernel finishes, the
resulting output of the kernel is then used to update the simulation as needed.

In [1]: import phys In [12]: da = phys.Measurement(2, "au**1")
phys.Measurement.set_code_scale("m", 0.0001) db = phys.Measurement (149597870700 * 5, "m#*1")

x = phys.Measurement (5, "kg**1 m**1 s**-2")
y = phys.Measurement(5, "N**1")

: + +
z = phys.Measurement (20, "W**1 J**-1") In [13]: |G o

out[13]: (7.000000000000001 au**1, 1047185094900.0 m**1)
In [2]: x.scale, x.flat[0]

Out[2]: (0.0001, 0.0005)

In [3]: x *y

Out[3]: 25.0 kg**1 m*1 s**-2 N**1

(a) (b)

FIGURE 2. Three examples of the Measurement class demonstrating dimensional analysis and unit conversions. (a)
Examples of binary and unary operations. (b) Example of two automatic unit conversions.

This subclass of Numpy’s ndarray’ represents an array of numbers that follows the code units scheme, which

is where we scale units up or down to avoid floating point precision loss. Instances of this class are initialized with
two parameters, raw_value, and units. raw_value can be another ndarray, another Measurement, ora

list mixed with numbers and other Measurements. units is a string representing the units of the value, which

are written as their corresponding symbol, either the Python power symbol (**) or a caret ("), and the dimension of
the unit.

The scaling process starts by determining what units are being used. After isolating these units, they are
recursively converted to their defining units until they have been reduced to the 7 fundamental SI units. After this,
we convert these fundamental units to the code scale units.* Each of these code scale units carries a scaling factor,
which is used to affect the scaling of all Measurements that rely on the same fundamental units. We multiply each
element of our array by this scale. We store these dimensions, as well as the dimensions of the original units used for
use whenever a string representation is needed. Each of the 7 fundamental SI units can be scaled up or down using
set code scale, as seen in Fig. 2a. Currently, it is designed so that it can only be done once, before any related
modules are imported. This is to optimize for speed, as performing checks to see if two Measurements have the
same scale can be costly; however, it may be possible to use something akin to a counter to keep track of the current
scale. After it is set up, it may be operated on by directly calling one of Numpy's ufuncs—such as
numpy . square’—or by utilizing the corresponding Python operator, generating results with the appropriate
underlying units and scale, as seen in Fig. 2. It will not cancel or reduce any original units passed to it for speed;
however, a future implementation may reduce units lazily when a string representation is needed.

Photon Scattering, Measurement, and Generation

In [2]: T = 5778
Eg = np.linspace(phys.light.E_from wavelength(200e-9), phys.light.E_from wavelength(2500e-9), 1000)
gamma = phys.light.planck distribution(Eg, T)

E = [phys.light.planck phot_ distribution(phys.light.E_from wavelength(200e-9), phys.light.E_from wavelength(2
500e-9), T, bins=50000) for x in range(10000)]
phot = phys.light.generate photons_from E(E)
for p in phot:
p.r = phys.Measurement([-6440e3 * 5, 0, 0], "m**1")

(@

Photon path trace at t=0.1010

1.0

le7

In [4]: runtime = ((6440 * 5 + 6440) * le3 / phys.light.c) * 5 0.8
print("Target runtime: " + str(runtime))
A_targ = phys.Measurement(5.le-31, "m**2") * (phys.Measurement(532e-9, "m**1") *x 4)
sim = phys.Simulation(cl_on=True, exit=lambda cond: cond.t >= runtime)

0.6

z(m)

0.4
0.2

0.0

0.0

02
0.2 X2

-0.4

-06 &

W1y
ter Mg, -08

.2
X(,n) %.5%_751.00 ~1.0

sim.add_step(2, phys.UpdateTimeStep(lambda t: phys.Measurement(0.001, "s**1")))
sim.add_step(l, newton.NewtonianKinematicsStep())

sim.add_step(3, light.ScatterIsotropicStep(A=A_targ, variable n = True, variable n_fn = cl_n, wavelength dep_
scattering=True))

tp = phys.light.TracePathMeasureStep(None)
sim.add_step(0, tp)
sim.add_objs (phot)

(b) ©

FIGURE 3. An example simulation involving isotropic scattering around an approximation of the upper half of Earth’s
atmosphere with a photon distribution resembling that of the Sun, as well as output displayed in matplotlib. (a) A segment of the
necessary code to set up a simulation involving a beam of photons being scattered, namely the creation of PhotonObjects
drawn from planck phot distribution. (b) Another segment of the necessary code required to set up the simulation,
including the addition of Steps and PhotonObjects. (c) The resulting paths of a beam of photons as they travel towards an
object with arbitrarily high density.

Currently, the main feature of this package are the tools for photon scattering and measurement, which are in the
physicl.light module. It includes ScatterDeleteStep and ScatterIsotropicStep, which
represent photon absorption and isotropic scattering, respectively. It also includes ScatterMeasureStep, which
measures photons passing through specified planes, ScatterSignMeasureStep, which measures the quantity

of photons with a positive/negative sign along any axis, and TracePathMeasureStep, which tracks the path a

photon takes.
The first class, ScatterDeleteStep, represents the scattering of photons as if they were being absorbed into

a medium. It assumes that the medium has a specified uniform number density, n,,,, and cross-sectional area,

Ayyrg s throughout the entire simulation space. When this step is run, it finds all PhotonObjects within the

simulation, and collects the Ars for all photons. It also generates a random number in [0, 1) for each photon, and
allocates two lists, one pointing to the photons examined, and another for the results of the OpenCL kernel it will

run. The kernel will find P_, = PyargAiarg AT and if P_, is greater than the random number generated for a

particular photon, then it will be marked for removal. After the OpenCL kernel returns, the marked photons are
deleted from the simulation.
ScatterIsotropicStep represents the scattering of photons as if they were being refracted into a random

direction. Like ScatterDeleteStep it assumes a consistent Mg and Amg throughout the entire simulation,

col

however the Nigrg MAY be varied with an OpenCL expression, and if the user desires, scattering may also be
dependent on the wavelength, as occurs with Rayleigh scattering. When this Step is run it first collects the Ar for
each photon. It then generates a random 0€[0,2n), $€[0,n) that will be used to derive a new direction for the
photon to go, and a random number rand €[0,1). Next, it collects the original V for the photons; if

wavelength-dependent scattering is on, it collects each E, ; and if variable Piarg is on, it collects the current » of

each photon. Then when the kernel is completed, ScatterIsotropicStep will apply the changes calculated in
the kernel. If the velocity was changed, the photon will have its Av < v,,,, — v _;; . An example of this in use can be
seen in Fig. 3.

ScatterMeasureStep measures the total quantity of photons within a simulation, as well as the number and
energies of photons that pass through a plane at a given point in time. When initialized, the user may decide whether
they want the total quantity of objects to be measured, coordinates for the planes where we should measure photons
passing through, and whether the ScatterDeleteStep should also record the energies of the photons passing
through. ScatterSignMeasureStep measures the number of objects within a simulation as well as the number
of objects whose v,,v,,v. have values greater than zero. TracePathMeasureStep tracks the position of each
object throughout a simulation. When this step is run, it iterates through each object in the simulation and performs
several steps. If the current object in the iteration does not have a unique identifier, it assigns one.
TracePathMeasureStep then records the starting time, creates a list to store positions, and if the user desires,
the frequency with which the photon changed velocity. Then, TracePathMeasureStep records the current
position of the object, and if the velocity changes, increments the accumulator representing the frequency of velocity
changes. After the simulation is complete, TracePathMeasureStep compiles the data collected into a
two-dimensional array representing the ¢s that were recorded, with each row represents an individual object, the
number of times its velocity changed if desired, and finally all positions that were recorded for each time. An
example of TracePathMeasureStep can be seen in Fig. 3, where its output data is graphed to show
atmospheric refraction.

In addition to these tools to simulate and measure photons, there is planck phot distribution, which
randomly generates a series of photon energies according to a desired segment of the Planck distribution.
planck phot distribution works by finding the total area under a Planck distribution curve for a desired
number of bins, normalizing the total area under these bins so that it equals 1, and finally randomly picking an
energy bin using our normalized distribution. There are also two other ways to generate photons.
generate photons from E takes a list of £, and generates new photons for each energy given with a
velocity of ¢ in the +x direction. generate photons, takes a function that generates random numbers,
minimum and maximum energies, and a desired number of photons, and returns a list of PhotonObjects.

ACKNOWLEDGMENTS

I would like to acknowledge my physics professor, Dr. Sean O’Neill, for his guidance and feedback on this
project. I would also like to acknowledge my capstone advisor, Dr. David Wolff, for providing feedback and
facilitating this project. In addition, I would like to acknowledge Megan Longstaff, a fellow physics student who
connected me with Dr. O’Neill. Finally, I would like to acknowledge Dr. Katrina Hay, Dr. William Greenwood, and

Professor Laurie Murphy for advising my academic career so far, without them this project would not have
happened.

REFERENCES

Heterogeneous Computing with OpenCL, edited by B. Gaster, (Morgan Kaufmann, Waltham, 2012), p. 277.
OpenCL Programming Guide, edited by A. Munshi (Addison-Wesley. Upper Saddle River, 2012), p. 603.
A. Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, Parallel Computing 38(3):157-74 (2012).

Bureau International des Poids et Mesures, The International System of Units 9th ed. (2019), available from
https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf.

5. S. van der Walt, S.C. Colbert, and G. Varoquaux, Comput Sci Eng. 13(2):22-30 (2011).

el i\

